Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 214

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Initial verification and validation of a new CASMO5 JENDL-5 nuclear data library for typical LWR applications

Watanabe, Tomoaki; Suyama, Kenya; Tada, Kenichi; Ferrer, R. M.*; Hykes, J.*; Wemple, C. A.*

Nuclear Science and Engineering, 10 Pages, 2024/00

 Times Cited Count:0 Percentile:0.18(Nuclear Science & Technology)

A new nuclear data library for the advanced lattice physics code CASMO5 has been prepared based on JENDL-5. In JENDL-5, many essential nuclides for conventional LWR analysis have also been modified based on state-of-the-art evaluations. The new JENDL-5-based CASMO5 library was prepared by replacing as much of the nuclear data of the current CASMO5 ENDF/B-VII.1-based library as possible with JENDL-5. This study verified and validated the new library. Verifications were performed based on the OECD/NEA burnup credit criticality safety benchmark phase III-C, and the calculated k$$_{inf}$$ and fuel compositions of the BWR fuel assembly were compared with reported benchmark results. Comparison with the MCNP6.2 result was also performed using the same benchmark model. In addition, the TCA critical experiment and Takahama-3 post-irradiation experiment were used for validation. The results indicate that the new library performs well and is comparable to the ENDF/B-VII.1-based library in predictions of reactivity and fuel compositions for LWR systems.

Journal Articles

Void reactivity in lead and bismuth sample reactivity experiments at Kyoto University Critical Assembly

Pyeon, C. H.*; Katano, Ryota; Oizumi, Akito; Fukushima, Masahiro

Nuclear Science and Engineering, 197(11), p.2902 - 2919, 2023/11

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

Sample reactivity and void reactivity experiments are carried out in the solid-moderated and solid-reflected cores at the Kyoto University Critical Assembly (KUCA) with the combined use of aluminum (Al), lead (Pb) and bismuth (Bi) samples, and Al spacers simulating the void. MCNP6.2 eigenvalue calculations together with JENDL-4.0 provide good accuracy of sample reactivity with the comparison of experimental results; also experimental void reactivity is attained by using MCNP6.2 together with JENDL-4.0 and ENDF/B-VII.1 with a marked accuracy of relative difference between experiments and calculations. Uncertainty quantification of sample reactivity and void reactivity is acquired by using the sensitivity coefficients based on MCNP6.2/ksen and covariance library data of SCALE6.2 together with ENDF/B-VII.1, arising from the impact of uncertainty induced by Al, Pb and Bi cross sections. A series of reactivity analyses with the Al spacer simulating the void demonstrates the means of analyzing the void in the solid-moderated and solid-reflected cores at KUCA

Journal Articles

Reactor physics experiment on a graphite-moderated core to construct integral experiment database for HTGR

Okita, Shoichiro; Fukaya, Yuji; Sakon, Atsushi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Unesaki, Hironobu*

Nuclear Science and Engineering, 197(8), p.2251 - 2257, 2023/08

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Development of experimental core configurations to clarify k$$_{eff}$$ variations by nonuniform core configurations

Gunji, Satoshi; Araki, Shohei; Suyama, Kenya

Nuclear Science and Engineering, 197(8), p.2017 - 2029, 2023/08

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The fuel debris generated by the accident at the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant is expected to have not only heterogeneous but also nonuniform compositions. Similarly, damaged fuel assemblies remaining in the reactor vessels also have nonuniform configurations due to some missing fuel rods. This non-uniformity may cause changing neutron multiplication factors. The effect of non-uniformity on the neutron multiplication factor is clarified by computations, and the possibility of experimentally validating the computations used for criticality management is being investigated. For this purpose, in this study the criticality effects of several core configurations of a new critical assembly, STACY, of the Japan Atomic Energy Agency with nonuniform arrangements of uranium oxide fuel rods, concrete rods, and stainless-steel rods were studied to confirm benchmarking potential. The difference in these arrangements changed the neutron multiplication factor by more than 1 $. We confirmed that changes in local neutron moderation conditions and the clustering of specific components caused this effect. In addition, the feasibility of benchmark experimental cores with nonuniform arrangements is evaluated. If benchmarking of such experiments could be realized, it would help to validate calculation codes and to develop criticality management methods by machine learning.

Journal Articles

Impact of using JENDL-5 on neutronics analysis of transmutation systems

Sugawara, Takanori; Kunieda, Satoshi

Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2023) (Internet), 7 Pages, 2023/08

This study investigates the impact of the change from JENDL-4 to JENDL-5 on neutronics analysis of transmutation systems. As the transmutation systems, the following two systems are targeted: JAEA-ADS, a lead-bismuth cooled accelerator-driven system, and MARDS, a molten salt chloride accelerator-driven system. For the JAEA-ADS, the k-eff value increased 189 pcm from JENDL-4 to JENDL-5. It was found that the revisions of various nuclides affected to this difference. For example, the revision of $$^{15}$$N indicated an increase of 200 pcm from the JENDL-4 result. For the MARDS, it was found that the major revision of $$^{37}$$Cl and $$^{35}$$Cl cross sections was the main cause of the k-eff differences. This study confirmed that the difference in the nuclear data libraries still indicated differences in calculation results for the transmutation systems.

Journal Articles

A Functional expansion tally method with numerical basis sets generated by singular value decomposition for one-dimensional Monte Carlo calculations

Kondo, Ryoichi; Nagaya, Yasunobu

Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2023) (Internet), 10 Pages, 2023/08

A functional expansion tally (FET) method with numerical basis functions generated by singular value decomposition (SVD) is newly proposed. Traditionally, analytical functions were used for the FET calculations, e.g., Legendre polynomials for a one-dimensional distribution. However, the expansion terms could increase to reconstruct steep or complex distributions with these functions. A basis set that can well represent the target distribution with lower order expansion is desired to achieve high accuracy with the small computational resource. In the present study, a numerical basis set is generated from snapshot data by using SVD. This approach is based on the reduced order modeling (ROM). We applied ROM to the FET method in Monte Carlo calculations. The numerical result showed the applicability of the proposed method, on the other hand, some issues were revealed, e.g., discretization of the snapshot data.

Journal Articles

Experimental study on local damage to reinforced concrete panels subjected to oblique impact by projectiles

Okuda, Yukihiko; Nishida, Akemi; Kang, Z.; Tsubota, Haruji; Li, Y.

Journal of Nuclear Engineering and Radiation Science, 9(2), p.021801_1 - 021801_12, 2023/04

Most empirical formulas were proposed to evaluate the local damage to reinforced concrete (RC) structures based on impact tests conducted with a rigid projectile at an impact angle normal to the target structure. Only a few impact tests were performed involving a soft projectile. Therefore, in this study, we conducted a series of impact tests to evaluate the local damage to RC panels subjected to normal and oblique impacts by rigid and soft projectiles. This paper presents the test conditions, test equipment, test results, and obtained knowledge on local damage to RC panels subjected to normal and oblique impacts.

Journal Articles

ARKADIA; For the innovation of advanced nuclear reactor design

Ohshima, Hiroyuki; Asayama, Tai; Furukawa, Tomohiro; Tanaka, Masaaki; Uchibori, Akihiro; Takata, Takashi; Seki, Akiyuki; Enuma, Yasuhiro

Journal of Nuclear Engineering and Radiation Science, 9(2), p.025001_1 - 025001_12, 2023/04

This paper describes the outline and development plan for ARKADIA to transform advanced nuclear reactor design to meet expectations of a safe, economic, and sustainable carbon-free energy source. ARKADIA will realize Artificial Intelligence (AI)-aided integrated numerical analysis to offer the best possible solutions for the design and operation of a nuclear plant, including optimization of safety equipment. State-of-the-art numerical simulation technologies and a knowledge base that stores data and insights from past nuclear reactor development projects and R&D are integrated with AI. In the first phase of development, ARKADIA-Design and ARKADIA-Safety will be constructed individually, with the first target of sodium-cooled reactor. In a subsequent phase, everything will be integrated into a single entity applicable not only to advanced rectors with a variety of concepts, coolants, configurations, and output levels but also to existing light-water reactors.

Journal Articles

Validation of feedback reactivity evaluation models for plant dynamics analysis code during unprotected loss of heat sink event in sodium-cooled fast reactors

Yoshimura, Kazuo; Doda, Norihiro; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Journal of Nuclear Engineering and Radiation Science, 9(2), p.021601_1 - 021601_9, 2023/04

Feedback reactivity automatically caused by radial expansion of the core is known as one of the inherent safety features in a sodium-cooled fast reactor (SFR). In order to validate the evaluation models of the reactivity feedback equipped in the in-house plant dynamics analysis code named Super-COPD, the benchmark analyses for the unprotected loss of heat sink (ULOHS) tests of BOP-302R and BOP-301 in an experimental SFR, EBR-II were conducted and the applicability of the evaluation method for the reactivity feedback was indicated during the ULOHS even, by comparing the numerical results and the experimental data.

Journal Articles

Effects of vent size and wind on dispersion of hydrogen leaked in a partially open space; Studies by numerical analysis

Terada, Atsuhiko; Nagaishi, Ryuji

Nuclear Science and Engineering, 197(4), p.647 - 659, 2023/04

 Times Cited Count:2 Percentile:31.61(Nuclear Science & Technology)

In order to understand dispersion of hydrogen leaked in a partially open space practically, which can be considered as a basic model for all processes of transfer, treatment, storage and disposal of radioactive materials containing fuel debris in the decommissioning of nuclear facilities after a severe accident, by using a CFD code, the effects of vent size and outer wind on the H$$_{2}$$ dispersion were analytically studied by adopting the experimental Hallway model, which has H$$_{2}$$ release hole on the ceiling, one vent on the Roof vent and Door vent. Air flowed in the model from the Door vent, while H$$_{2}$$ was discharged outside from the Roof vent. The discharged amount of H$$_{2}$$ increased in conjunction with the air inflow when the size of Roof and or Door vents was increased. The effect of wind depended on the direction to the Door vent: wind from the same direction as the Door vent promoted the H$$_{2}$$ discharge, while wind from the opposite direction suppressed. The dispersion characteristics of indoor leaked H$$_{2}$$ was clarified for comparing model tests with the same Froude number and different scales. It was found from the analysis results of comparing model tests with the same Froude number and different scales that when the H$$_{2}$$ leaked into the room and diffused to the air, the flow generated by the buoyancy of mixed gas created the stack effect which caused the natural ventilation by drawing in the air from the outside through vent. In addition, it was speculated that the H$$_{2}$$ concentration decreased after its leak by quickly mixing with the air which flowed in from the vents and reached to the floor due to the Coanda effect, which is the effect of the free jet being drawn to a nearby wall.

Journal Articles

Measurements of the neutron total and capture cross sections and derivation of the resonance parameters of $$^{181}$$Ta

Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto

Nuclear Science and Engineering, 18 Pages, 2023/00

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

Journal Articles

Neutron importance estimation via new recursive Monte Carlo method for deep penetration neutron transport

Tuya, D.; Nagaya, Yasunobu

Nuclear Science and Engineering, 15 Pages, 2023/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In Monte Carlo neutron transport calculations for local response or deep penetration problems, some estimation of an importance function is generally required in order to improve their efficiency. In this work, a new recursive Monte Carlo (RMC) method, which is partly based on the original RMC method, for estimating an importance function for local variance reduction (i.e., source-detector type) problems has been developed. The new RMC method has been applied to two sample problems of varying degrees of neutron penetrations, namely a one-dimensional iron slab problem and a three-dimensional concrete-air problem. The biased Monte Carlo calculations with variance reduction parameters based on the obtained importance functions by the new RMC method have been performed to estimate detector responses in these problems. The obtained results are in agreement with those by the reference unbiased Monte Carlo calculations. Furthermore, the biased calculations offered an increase in efficiency on the order of 1 to 10$$^{4}$$ in terms of the figure of merit (FOM). The results also indicated that the efficiency increased as the neutron penetration became deeper.

Journal Articles

Impact of uncertainty reduction on lead-bismuth coolant in accelerator-driven system using sample reactivity experiments

Katano, Ryota; Oizumi, Akito; Fukushima, Masahiro; Pyeon, C. H.*; Yamamoto, Akio*; Endo, Tomohiro*

Nuclear Science and Engineering, 20 Pages, 2023/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In this study, we have demonstrated that data assimilation using lead and bismuth sample reactivities measured in the Kyoto University Critical Assembly A-core can successfully reduce the uncertainty of the coolant void reactivity in accelerator-driven systems derived from inelastic-scattering cross-sections of lead and bismuth. We re-evaluated and highlighted the experimental uncertainties and correlations of the sample reactivities for the data assimilation formula. We used the MCNP6.2 code to evaluate the sample reactivities and their uncertainties, and performed data assimilation using the reactor analysis code system MARBLE. The high-sensitivity coefficients of the sample reactivities to lead and bismuth allowed us to reduce the cross-section-induced uncertainty of the void reactivity of the accelerator-driven system from 6.3% to 4.8%, achieving a provisional target accuracy of 5% in this study. Furthermore, we demonstrated that the uncertainties arising from other dominant factors, such as minor actinides and steel, can be effectively reduced by using integral experimental data sets for the unified cross-section dataset ADJ2017.

Journal Articles

Implementation of resonance upscattering treatment in FRENDY nuclear data processing system

Yamamoto, Akio*; Endo, Tomohiro*; Chiba, Go*; Tada, Kenichi

Nuclear Science and Engineering, 196(11), p.1267 - 1279, 2022/11

 Times Cited Count:1 Percentile:31.61(Nuclear Science & Technology)

The resonance upscattering effect (the thermal agitation effect) is incorporated in the generation capability of multi-group neutron cross sections of the FRENDY nuclear data processing system. The resonance upscattering effect is considered by (1) the variation of self-shielding factors (effective cross sections) due to the change in ultra-fine group spectrum and (2) the variation of group-to-group elastic scattering cross sections. In the verification calculations, impacts on the ultra-fine group spectrum, effective cross sections, and neutronics characteristics (the Doppler effect) are confirmed. The effect of energy group structure and the treatments of resonance upscattering on the Doppler effect through the variation of effective cross sections and the elastic scattering matrix are studied. The results indicate that the FRENDY can provide appropriate multi-group cross sections considering the resonance upscattering effect.

Journal Articles

Sensitivity coefficient evaluation of an accelerator-driven system using ROM-Lasso method

Katano, Ryota; Yamamoto, Akio*; Endo, Tomohiro*

Nuclear Science and Engineering, 196(10), p.1194 - 1208, 2022/10

 Times Cited Count:1 Percentile:31.61(Nuclear Science & Technology)

In this study, we propose the ROM-Lasso method that enables efficient evaluation of sensitivity coefficients of neutronics parameters to cross-sections. In the proposed method, a vector of sensitivity coefficients is expanded by subspace bases, so-called Active Subspace (AS) based on the idea of Reduced Order Modeling (ROM). Then, the expansion coefficients are evaluated by the Lasso linear regression between cross-sections and neutronics parameters obtained by the random sampling. The proposed method can be applied in the case where the adjoint method is difficult to be applied since the proposed method uses only forward calculations. In addition, AS is an effective subspace that can expand the vector of sensitivity coefficients with the lower number of dimension. Thus, the number of unknows is reduced from the original number of input parameters and the calculation cost is dramatically improved compared to the Lasso regression without AS. In this paper, we conducted ADS burnup calculations as a verification. We have shown how AS bases are obtained and the applicability of the proposed method.

Journal Articles

Post-test analyses of the CMMR-4 test

Yamashita, Takuya; Madokoro, Hiroshi; Sato, Ikken

Journal of Nuclear Engineering and Radiation Science, 8(2), p.021701_1 - 021701_13, 2022/04

Journal Articles

Experimental analyses of $$^{243}$$Am and $$^{235}$$U fission reaction rates at Kyoto University Critical Assembly

Pyeon, C. H.*; Oizumi, Akito; Fukushima, Masahiro

Nuclear Science and Engineering, 195(11), p.1144 - 1153, 2021/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Measurements of $$^{243}$$Am and $$^{235}$$U fission reaction rates are conducted with the use of two single fission chambers in the solid-moderated and solid-reflected core at the Kyoto University Critical Assembly (KUCA). Critical irradiation experiments of $$^{243}$$Am and $$^{235}$$U foils are carried out, and the measured result of $$^{243}$$Am/$$^{235}$$U is 0.0424 $$pm$$ 0.0019; also, calculation/experiment values between calculated (MCNP6.1 with JENDL-4.0, ENDF/B-VIII.0, and JEFF-3.3) and measured results of $$^{243}$$Am/$$^{235}$$U range among 0.93 $$pm$$ 0.04, 0.94 $$pm$$ 0.04, and 0.93 $$pm$$ 0.04, respectively. Through a comparison between the measured and calculated results, the $$^{243}$$Am fission cross-section data of the three major nuclear data libraries are successfully validated, demonstrating the same accuracy as that of previous minor actinide irradiation experiments at KUCA. Importantly, the comparison also provides the complemental data of integral experiments of $$^{243}$$Am fission reaction rates that confirm the accuracy of the $$^{243}$$Am fission cross-section data.

Journal Articles

Calculation of transient parameters of the integral kinetic model with delayed neutrons for space-dependent kinetic analysis of coupled reactors

Takezawa, Hiroki*; Tuya, D.; Obara, Toru*

Nuclear Science and Engineering, 195(11), p.1236 - 1246, 2021/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

This study introduces new methodologies for integrating fission reactions induced by delayed neutrons into the Multi-Region Integral Kinetic (MIK) code by using a Monte Carlo neutron transport calculation. First, it was confirmed that it is feasible to solve the Integral Kinetic Model (IKM) with delayed neutrons by the forward Euler discretization method in terms of the number of time steps. This can be done with the help of the law of radioactive decay to reflect the delay in the emission of delayed neutrons in the discretized IKM. Second, a new Monte Carlo-based methodology was introduced for calculating the cumulative distribution functions of secondary fission induced by prompt and delayed neutrons. These functions are necessary for the discretized IKM. The results of preliminary verification using the Godiva reactor confirmed the applicability of the new Monte Carlo-based methodology.

Journal Articles

Visualization of radioactive substances using a freely moving gamma-ray imager based on Structure from Motion

Sato, Yuki; Minemoto, Kojiro*; Nemoto, Makoto*; Torii, Tatsuo

Journal of Nuclear Engineering and Radiation Science, 7(4), p.042003_1 - 042003_12, 2021/10

Journal Articles

Simulation study of a shield-free directional gamma-ray detector using Small-Angle Compton Scattering

Kitayama, Yoshiharu; Terasaka, Yuta; Sato, Yuki; Torii, Tatsuo

Journal of Nuclear Engineering and Radiation Science, 7(4), p.042006_1 - 042006_7, 2021/10

214 (Records 1-20 displayed on this page)